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Abstract …….. 

The problem of optimizing the average time latency of a network, using agents that are able to 
learn, is examined in this paper.  The network design is constrained by a traffic matrix that 
dedicates specific flows between specific pairs of nodes.  Although this is an application type 
of analysis, only the methodology is presented here, which includes an algorithm for 
optimization and a corresponding conservative rate of convergence based on no learning.  The 
application part will be presented in the near future once data are available.  It is expected that 
the tools developed in this paper can be used to optimize a wide range of objective functions 
that do not necessarily have to be the time latency.  For example, it could be the cost of the 
network. 

 

Résumé …..... 

Le problème de l’optimisation du temps de latence moyen d'un réseau au moyen d'agents 
capables d'apprentissage, est examiné dans le présent document.  La conception du réseau est 
contrainte par une matrice de trafic qui établit des flux particuliers entre des paires de nœuds 
particulières. Bien qu'il s'agisse d'un type de mise en application d'analyse, seulement les 
méthodologies sont présentées ici, y compris un algorithme d'optimisation et un taux de 
convergence correspondant raisonnable fondés sur un modèle sans apprentissage.  La mise en 
application sera présentée prochainement, une fois les données disponibles. Il est espéré que 
les outils décrits dans le présent document permettront d'optimiser une vaste gamme de 
fonctions objectifs en plus de la latence. 
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Executive summary  

A Stochastic Optimization Algorithm using Intelligent Agents: 
With Constraints and Rate of Convergence  

Bao U. Nguyen; DRDC CORA TM 2010-249; Defence R&D Canada – CORA; 
November 2010. 

Background: The power of computers nowadays allows us to examine problems where close 
form solutions do not necessarily exist, but which can be solved using efficient algorithms.  In 
addition, the models based on algorithms can simulate a level of detail that close form 
solutions often cannot.  In this Technical Memorandum (TM), one such algorithm is used to 
model a network such as the one implemented in the Networked Underwater Warfare 
Technology Demonstration Program (Ref [1]) that was conducted at DRDC Atlantic.   

Results: The current algorithm consists of intelligent agents who can learn.  The learning 
process of the agents leads to optimization of an objective function that is subject to a number 
of constraints.  The objective function was chosen to be the average time latency of a network, 
and the constraints to be the traffic matrix.  The aim is to minimize the average time latency 
while maintaining dedicated flows among pairs of nodes that form a network.  A node can be 
a sensor, a ship, an aircraft, a submarine, etc.  However, this algorithm is general in the sense 
that it can optimize other objective functions that are not the time latency and can model other 
types of constraints that are not the traffic matrix. 

Significance:  This report describes a novel optimization algorithm as well as the rate of 
convergence for the algorithm.  This is a new theoretical development for heuristic algorithms 
that simulate Markov processes.  It gives the Operations Research practitioner a valuable tool 
to determine how good an algorithm is and how optimal the solution is.  To the best of the 
author’s knowledge, such a convergence criteria is not available in the open literature.  It is 
hoped that the reader will make use of this type of agent-based algorithm and the 
corresponding convergence rates in the application of heuristic optimization algorithms.   
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Sommaire ..... 

A Stochastic Optimization Algorithm using Intelligent Agents: 
With Constraints and Rate of Convergence  

Bao U. Nguyen; DRDC CORA TM 2010-249; R & D pour la défense Canada – 
CARO; Novembre 2010. 

Contexte: La puissance des ordinateurs nous permet aujourd'hui d'étudier des problèmes pour 
lesquels une solution analytique n'existe peut-être pas, mais qui peuvent être résolus au moyen 
d'algorithmes efficaces. De plus, les modèles fondés sur les algorithmes peuvent simuler un 
niveau de détail que les solutions analytiques ne peuvent pas toujours atteindre. Le présent 
document technique (TM) décrit un algorithme de ce genre utilisé pour modéliser un réseau 
tel que celui mis en œuvre dans le projet de démonstration de technologies sur la guerre sous-
marine en réseau (Ref [1]) qui avait été réalisé à RDDC Atlantique.  

Résultats: Le présent algorithme est constitué d'agents intelligents capables d'apprentissage.  
Le processus d'apprentissage des agents permet d'optimiser une fonction objectif assujettie à 
un certain nombre de contraintes.  La fonction objectif choisie est le temps de latence moyen 
d'un réseau et les contraintes sont obtenues de la matrice de trafic.  Autrement dit, l’objectif 
est de minimiser le temps de latence moyen tout en maintenant les flux entre les paires de 
nœuds qui forment le réseau.  Un nœud peut être, par exemple, un capteur, un navire, un 
aéronef, un sous-marin.  Il n’en reste pas moins que l’algorithme est général : il peut être 
utilisé pour optimiser des fonctions objectifs autres que la latence et pour modéliser des types 
de contraintes autres que la matrice de trafic 

Importance: Ce rapport décrit non seulement un algorithme d'optimisation novateur, mais 
aussi le taux de convergence de l'algorithme.  Il s'agit d'un nouveau développement théorique 
des algorithmes heuristiques qui simulent les processus de Markov.  Le praticien en recherche 
opérationnelle obtient ainsi un précieux outil pour évaluer la qualité de son algorithme et pour 
déterminer si sa solution est optimale.  À la connaissance de l’auteur, aucun autre critère de 
convergence similaire n'est encore disponible dans les sources publiées.  Il est espéré que le 
lecteur mettra à profit ce type d'algorithme fondé sur les agents et les taux de convergence 
correspondants dans la mise en application d'algorithmes d'optimisation heuristique.  
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1 Background 

In support of a Technology Investment Fund (TIF) project at DRDC CORA on Network 
Centric Warfare (Ref [2]), the time latency of a generic network that is subject to a number of 
constraints, is determined.  The time latency of a network can be determined in many ways; 
however, this paper will describe a methodology on how to optimize the time latency using 
agents that have the ability to learn.  The main results of this paper are to provide an algorithm 
to do so and to derive the rate of convergence of the corresponding algorithm when no 
learning is in effect.  The methodology is inspired from Ref [3], which provides a heuristic 
algorithm to optimize a cost objective function.  Although part of the material in this 
Technical Memorandum (TM) has been published in Ref [4], the report includes an 
improvement in the convergence rate of the optimization algorithm and a more complete 
proof of this convergence rate.   
 

 

 

Figure 1: An Example of a Defence Network. 

 

2 Learning Algorithm 

This section examines a communication network that has a globally maximal capacity .  The 
network flows must satisfy the traffic matrix (

C
uvγ ).  That is, there will be a dedicated flow 

from node  to node  that is greater than or equal to u v uvγ .  This ensures that node  can 
communicate with node  with the desired flow 

u
v uvγ .  In addition, the time latency of the 

network depends on both the flow and the capacity of each link.  This development makes use 
of the algorithm in Ref [3], which is described below. 
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 The capacities of the links are represented by a vector ( )1 2, ,..., ec c c

0 bps

 where  is the number of 
edges or links in the network,  is chosen from a finite set of capacities such as ( )  
where a capacity unit corresponds, for example, to 120 (bits per second).  For each link i  
and each possible capacity , there is a triplet 

e

ic 0,1, 2,...

j ( )ij, ,ijijI S D  where ijI is the probability that the 
current capacity  of the link i  should be increased,  is the probability that the current 
capacity  of the link  should remain unchanged, and  is the probability that the current 
capacity  of the link i  should be decreased.  The capacity  of a link  is modelled as an 
agent whose learning process is encoded in the evolution of the triplet 

j ijS

ijD

ic
j
j

i
i

( , ,ij ij )ijI S D  where 

. 1=ij ij ijI S D+ +
   
The final solution vector will consist of the capacities  such that  probability values 
approach unity e.g. .  The closer this value is to unity, the more accurate is the solution.  
This is so that as the optimal solution is approached, the algorithm favours the current 
solution, hence  tends to unity.  As is often the case with heuristic algorithms, Ref [3] did 
not provide the rate of convergence of their algorithm.  Fortunately, it is possible to derive the 
rate of convergence for this algorithm, at least in the case where agents do not learn.  
However, before presenting the derivation for the rate of convergence, the pseudo-code in Ref 
[3] is shown below.  The algorithm can be divided into three modules.  Module 1 initializes 
the triplet (

ic ijS
0.99

)j

ijS

, ,ij iijI S D , looks for a feasible solution, and determines its value as dictated by the 
objective function.  Module 2 searches the solution space.  Module 3 updates the triplet 
( ), ,ij ij ijI S D . 
 
Module 1.  Initialize the triplet ( ), ,ij ij ijI S D . 
 

For (  to ) 1i = ( )maxlinks =e

For (  to1j = ( )maxcaps =C ) 

If ( (left-boundary-state))  1j =
1/ 2ijI = , 1/ 2ijS = , 0ijD =    

End-If 

If ( (right-boundary-state)) maxcapsj =
0ijI = , 1/ 2ijS = , 1/ 2ijD =   

End-If 

If (1 (internal-state))  j C< <

1/ 3a = , ijI a= , ijS a= , ijD a=   
End-If  

End-For 
End-For  
Repeat 

For ( =1 to )  i maxlinks

2 DRDC CORA TM 2010-249 
 

 
 



 

( )0,maxcapsic RAND=  
End-For 

Until (network is feasible) 

current-objective = calculate-objective() 

For (  to m )  1i = axlinks
ibest c c− = i   

End-For 

best-objective = current-objective() 
 
Module 2.  Search the solution space. 
 

While (count<num-iterations) and (accuracy-level (all links) < required accuracy) 
For (  to m ) 1i = axlinks

( ), ,i ij ij ijAction RAND Increase Stay Decrease=  
If ( i ijAction Increase= )  

1i ic c= +   
End-If 
If ( i ijAction Decrease= )   

1i ic c= −  
End-If 

current-objective = calculate-objective() 

End-For 

For (  to m ) 1i = axlinks
ij c=  

If (network is feasible)  
If ( i ijAction Increase= )   

( )1,ij RD λRaise   
End-If 
If ( i ijAction Stay= )   

( )1,ij RS λRaise    
End-If 
If ( i ijAction Decrease= )   

( )1,ij RD λRaise   
End-If 

Else 
Reset all links to best-objective capacities 

End-If 

If (network is feasible) and (current-objective < best-objective)  

If ( i ijAction Increase= ) 
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( )2,ij RD λRaise   
End-If  
If ( i ijAction Stay= ) 

( )2,ij RS λRaise    
End-If 
If ( i ijAction Decrease= )  

( )2,ij RS λRaise   
End-If 
For ( 1i =  to m )   axlinks

ibest c ci− =    
End-For 
best-objective = current-objective() 

End-If 
End-For 

End-While 
 
Module 3.  Procedure Raise.  Updating the triplet ( ), ,ij ij ijI S D .  1R Rλ λ= is associated with a 
new feasible solution.  2R Rλ λ=  is associated with a new feasible solution that is also superior. 
 

If (Action = Increase) 
ij R ijD Dλ= ⋅ ; ij R ijS Sλ= ⋅ ; ( )1ij ij ijI D S= − +  

End-If 

If (Action = Stay)  
ij R ijI Iλ= ⋅ ; ij R ijD Dλ= ⋅ ; ( )1ij ij ijS I D= − +  

End-If 

If (Action = Decrease)  
ij R ijI Iλ= ⋅ ; ij R ijS Sλ= ⋅ ; ( )1ij ij ijD I S= − +   

End-If 
 
 

3 Algorithm Extension 

The capacity assignment is modelled in the same way as that of Oommen and Roberts 2000 
(see previous section).  Hence, there is a triplet ( ) ( ) ( )( ), ,c c c

ij ij ijI S D

( ) ( ) ( )

 associated with link  and 

capacity , and the superscript c  stands for capacity.  In addition, each path l  is modelled in 
a similar way as an agent that carries k units of flow and which connects node u to node v.  
Each path type agent is represented by a triplet 

i

j

( )p, ,p p
uvlk uvlk uvlkI S D  where the superscript  

stands for path.  These triplets are updated at each run depending on random numbers and 
whether the objective function is improved or not.  For example, if the objective function is 

p
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improved then both ( )c
ijS  and ( )p

uvlkS  are increased.  This new algorithm is the first main result of 
this paper and can be used to optimize the average time latency of a network, as defined in 
Ref [5]: 
 

1 k

kuv k

f

k
uv

T
c fγ

= ⋅
−∑∑

)

         (1) 

  
where  represents node  and node ; each  represents a link while ( ,u v u v k kf  and  are 
respectively the flow and capacity of that link.  Enumeration is used to generate all possible 
paths that connect node  to node .  Modelling each path as an agent ensures flow 
conservation through each node.  The flow through a link is then equal to the sum of the flows 
of all paths that traverse that link.  For example, let 

kc

u v

{ }, , , ,a b c d e  be the set of nodes of a 
complete graph (all possible links) as shown in Figure 2.  Let’s consider the link ( )a b− ; 
path1 be (  with 2 units of flow, path2 be )a b c− − ( )da b− −  with 1 unit of flow and path3 be 

 with 3 units of flow.  The flow through the link (c a− − )b ( )a b−  will be the sum of 2 1 3  
as each of the three paths traverse 

+ +

( )ba − .  Note that the flow of a link ranges from zero to  
(the maximal capacity of the network).   

C

 

 

Figure 2: An Example of Flows in a Graph. 
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4 Rate of Convergence of Flows in a Graph 

Define the rate of convergence in a similar way to that in Ref [6].  That is, the probability that 
a globally optimal state is found at least once.  The rate of convergence derived below 
assumes no learning.  Since the purpose of learning is to accelerate the convergence of the 
algorithm, it is expected that this rate of convergence is a conservative estimate of the 
algorithm.  Observe that for a link, the flow through that link is regulated by a Markov chain 
as shown in Fig. 3.  Each flow state is labelled by a number.  For example, the label zero 
indicates that the flow is equal to zero (unit of flow) while the label one indicates that the flow 
is equal to one (unit of flow) etc.  The connections between the labels show the transitions 
among the states.  For example, the link from flow zero to flow one represents the probability 
that flow zero makes a transition to flow one.  The link from flow one to flow one represents 
the probability that flow one remains flow one. 
 

 

Figure 3: A Markov Chain. 

 
The Markov chain shown in Fig. 3 can be represented by a transition matrix  where  is 
the probability that state i  transitions into state .  For example, given 

P ijP
j 4C = , we get: 

 

0 1 2 3 4
0 0 1 0 0 0
1
2 0 0
3 0 0

4 0 0 0 1 0

a a a
P

a a a
a a a

C

⎛ ⎞
⎜ ⎟
⎜=
⎜
⎜ ⎟
⎜ ⎟
⎜ ⎟= ⎝ ⎠

0 0 ⎟
⎟

        (2) 

 
where .  Model that way so that the state with flows equal to zero or  are not 
considered feasible.  If a flow of a link is equal to zero, then there is no communication 

1/ 3a = P C

0 1 2 C …
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necessary.  Hence, the probability of transition from state zero to state one is set to 
percent.  If a flow of a link is equal to , then there is no capacity left for the remaining 

links, which can happen only when there is only one link in the network.  However, the 
network considered here consists of many links.  Hence, the probability of transition from 
state  to state  is also set to 100  percent.  Additionally, for 

100 C

C 1C − 1,..., 1j C= − , given link i , 
the probability, , that state  transitions to state , 1j jP − j 1j −  is equal to ,i jD a= ; the probability, 

,j jP , that state  stays the same is equal to j ,i jS a= ; and the probability, , 1j jP + , that state  
transitions to state  is equal to 

j
1j + ,i jI a= .  For example, 1,0 ,1 ,1i iD S1,1 1,2P P P a ,1Ii= = = = = =  

while all other transitions from state 1  are forbidden.   

 

4.1 Lemma 1 
 
The probability that the flow through a path is optimal is given by: 
 

( ) ( )
( )2

2

1

C

C

−

−

n

fQ

1 1 n
fp a Q− ⋅ f≥ −

a

⋅          (3) 

 
where ,  is the number of iterations,  is the transition matrix associated with the 
flow of a path;  is equal to  with the exceptions that the first row, first column, last row 
and last column elements are set to zero; and 

1/ 3= fP

fP
n

fQ  is the sum of all elements of .  That is, n
fQ

( )
,i j

C

n n
f f

i j
Q Q∑∑  =

 
For example, given , we get: 4=
 

0

0

7Q a= ⋅

0 0 0

0 0
0 0 0

f

f

a a
Q a a a=

0
0 0
0 0

0
0

a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Q

0

         (4) 

 
Note that,  and  do not change with .  This is so because there is no learning.  
However, when learning is in effect, the elements of  and Q  are updated through the 
triplets ( )

fP

, ,

f n

fP f

I S D . 
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4.2 Proof of Lemma 1 
 
To alleviate the notation, suppress the subscript f  associated with  and Q .  Let the optimal 
flow be 

P
*f .  We wish to determine the probability that a random and non–optimal flow i  

transitions to another, also random and non–optimal, flow .  The probability of picking a 
random flow such that  is: 

j
*i f≠

 

 ( ) ( )
( )

*
2

2

1

C
P flow i f

C

−
= ≠ =

−
 

 
For example, given , then there are five possible states belonging to { } .  A 
random flow can be equal to any of these five states.  However, if state zero and state four are 
discarded as non feasible states, there remain only three states.  Hence the probability of 

picking a random and feasible flow  is 

4C = 0,1,2,3,4

i
( )

1 1/ 3
1C

=
−

.  Further, let * 3f = , then the probability 

that a random and feasible flow is not optimal is ( )
( )

2
2 / 3

1
C
C
−

=
−

.  As a result, the probability of 

picking at random a flow i  and that flow  is feasible and not optimal is i
( )
( )

( ) ( )/ 3 2
2

2
1 / 3 2 / 9

1

C

C

−
= ⋅ =

−
.   

 
The probability of starting with a feasible flow *i f≠  and ending up with another feasible 
flow , is regulated by the transition matrix .  That is, *j f≠ P
 

( ) ( ) ( ) ( ) ( )
( )

* * *
, 2

2
1 1

1
i j i j

C
P i f j f P i f P a a P

C

−
≠ → ≠ ≤ ≠ ⋅ ⋅ − = − ⋅ ⋅

−
,     (5) 

 
The probability of starting with any feasible flow *i f≠  and ending up with any other feasible 
flow  is the sum of the above expression over i  and  such that  i.e.  *j f≠ j *,i j f≠
 

( ) ( )
( ) *

2
,

2
1

1
ij

i j f

C
a P

C ≠

−
− ⋅ ⋅

−
∑  

Furthermore, observe that 
 

*
, ,

,,
i j i j

i ji j f

P P
≠

≤∑ ∑  

 
since all the elements of the transition matrix  are non negative and the LHS sums over all 
elements  and  such that  while the RHS sums over all elements  and  with no 
restrictions.  That is, the sum on the RHS includes more elements of  than the sum on the 
LHS.  Therefore,  

P
i j *,i j f≠ i j

P
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( ) ( )
( )

( ) ( )
( )*

, ,2 2
,,

2 2
1 1

1 1
i j i j

i ji j f

C C
a P a

C C≠

− −
− ⋅ ⋅ ≤ − ⋅ ⋅

− −
∑ ∑P  

 
Additionally, the RHS, above, sums over the states that are feasible and non–optimal, which 
implies that .  This can be interpreted in a way such that the RHS above includes all 
transitions from a state  that is feasible to a state  that is also feasible.  Therefore, any 
transitions from (to)  or  to (from) a feasible state is forbidden.  This is equivalent to 
replace  by .  If this argument is repeated times, we get an upper bound for the 
probability  of not achieving the optimal state after  iterations: 

, 0,i j C≠

ijQ

fq

i j

n
n

0 C
ijP

 

 ( ) ( )
( )

( ) ( )
( ),2 2

,

2 2
1 1

1 1
n n

f i j
i j

C C
q a Q a Q

C C

− −
≤ − ⋅ ⋅ = − ⋅ ⋅

− −
∑  

 
Therefore, the lower bound to the probability 1fp fq= −  of achieving the optimal state 
satisfies: 
 

( ) ( )
( )2

2
1 1

1
n

f

C
p a

C

−
≥ − − ⋅ ⋅

−
Q  

4.3 Lemma 2 

 

The probabilistic bound in Eqn. (3) of finding the optimal flow is an increasing function of .   n

 

4.4 Proof of Lemma 2 
 
This is true as 
 

( )1n n nQ Q Q Q P+ = ⋅ = ⋅ − Δ   
 
where .  Simple algebra dictates that P QΔ = −
 

n nQ P Q⋅ =  
 
Hence, 
 

1n n n n nQ Q P Q Q Q+ = ⋅ − ⋅Δ = − ⋅Δ  
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Since  has only positive and zero elements, this means that nQ ⋅ Δ 0nQ ⋅Δ > .  Therefore,  
 

1n nQ Q+ <  
 
As 
 

( ) ( )21 2 / 1 n
fp C C≥ − − − ⋅ Q  

 
This implies that  is an increasing function of n .  For example, given , fp 4C =

 
24Q a⋅ Δ = ⋅  

 
Hence,   
 

2 24Q Q a Q= − ⋅ <  

 

4.5 Lemma 3 
 
The probability that the capacity of a link is optimal is given by 
 

( ) ( )
( )

( ) ( )
( )21,...

2
min 1 1 1 1

1 1
n

c cc C

c
p a Q a

c C=

⎧ ⎫−⎪ ⎪≥ − − ⋅ ⋅ = − − ⋅ ⋅⎨ ⎬
− −⎪ ⎪⎩ ⎭

2

2 n
C

C
Q

−

f

    (6) 

 
Note that  is the probability of achieving the optimal capacity and .  However, if 
we assume that learning occurs, then  and  will change as a function of n , in which 
case they will not necessarily evolve in the same way.  Observe that the capacity of a link 
must be greater than the flow through that link since otherwise the average time latency 
shown in Eqn. 

cp CQ Q=

C j

fQ CQ

(1) is ill defined.  If a flow is , then the capacity ranges from  to C .  If 
the capacity shifts to the left by , we get  ranging from one to 

j
c

1+j
j − .  Since , the 

largest value for c  is C .  The fact that the largest value of c  is C and that  
0j ≥

 
( ) ( )

( )12 2

1 2

1
n n
c c

c c
Q Q

c c
+

− −
⋅ ≥ ⋅

−
 

 
for all c , as proved below, allows us to assert Lemma 3. 
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4.6 Proof of Lemma 3 

 

Proceed by induction on n .  The first step is to prove that the lemma holds for .  That is, 1n =
 

 ( ) ( )
( )12 2

1 2

1
c c

c c
Q Q

c c
+

− −
⋅ ≥ ⋅

−
 

 

Since ( )
( )

( )
( )

1
1

c c
c c
− −

≥
−

2
, we only need to show that 

( )1
1 1

1cQ
c c+⋅ ≥ ⋅

− cQ .  This can be 

established by observing that ( )3 4 / 3cQ c= − + .  
 
Now, assume that this is true for all 1,...,k n=  and prove for 1n + .  We will show that this is 
true when  is odd. A similar proof can be shown when c  is even.  c
 
Let  where  is the  column of and 1 2 1; ;...;

n n nn
ccQ d d d −⎡=

⎣
uv uv uv ⎤

⎦
n
id

uv
ith n

cQ 1 21 ; ;...;
n n nn

ccQ e e e+
⎡ ⎤=
⎣ ⎦
v v v

 where n
ie
v

 

is the  column of .  Note that the boundary rows and columns of and , whose 
elements are zeroes, were removed.  This will not affect the proof.   obeys a recursion: 

ith 1
n
cQ +

n
cQ n

cQ
n
cQ

1+

 
     (7) 1 2 1 2 3 2 3 4 2 1; ; ;...;

n n n n n n n n n nn
c cc cQ Q a d d d d d d d d d d− −⎡ ⎤⋅ = ⋅ + + + + + +

⎣ ⎦
uv uv uv uv uv uv uv uv uv uv

 
1

n
cQ +  obeys a similar recursion to the one above. 

 

4.6.1 Case 1: Assume that c  is odd 

 

Applying recursion and induction repeatedly, we get  inequalities where p
2
cp ⎢ ⎥= ⎢ ⎥⎣ ⎦

.  

Each time, the new inequality is obtained by removing the first term and the last term 
on both the LHS and RHS of the previous inequality. 
 

( ) ( )
( ) ( )

1 1 1
2 1 2

2 2 2
3 2 3

1 1... ...
1

1 1... ...
1

...

n n n n
c c

n n n
c c

e e d d
c c

e e d d
c c

− − − −
− −

− − −
− −

⋅ + + ≥ ⋅ + +
−

⋅ + + ≥ ⋅ + +
−

v v uv uv

v v uv uv

1
2

2
3

n−  
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( )
( )

1 2

1 2

1

1
1

n p n p n p
p p p

n p n p n p
p p p

e e e
c

d d d
c

− − −
+ +

− − −
+ +

⋅ + +

≥ ⋅ + +
−

v v v

uv uv uv
       (8) 

( )
( )

1 1
1 2

1 1
1

1 2

1
1

n p n p n p
p p p

n p n p
p p

e e e
c

d d
c

− − − − − −
+ +

− − − −
+

⋅ + ⋅ +

≥ ⋅ +
−

v v v

uv uv

1

       (9) 

 
where x

v
 is the sum of all elements of the vector x

v
.  The lemma is true if the first 

inequality is true. But the first inequality is true if the second inequality is true.  
Repeating the argument tells us that the lemma is true if the last inequality is true.  
Again, by induction, Eqn. (8) is true when replacing n p−  by 1n p− − : 
 

( )
( )

1 1 1
1 2

1 1
1 2

1

1
1

n p n p n p
p p p

n p n p n p
p p p

e e e
c

d d d
c

− − − − − −
+ +

− − − − − −
+ +

⋅ + +

≥ ⋅ + +
−

v v v

uv uv uv 1
      (10) 

 
Combining Eqns. (9) and (10), we get: 
 

( )
( )

( )

1 1 1
1 2

1 1 1
1 2

1 1
1 2

1 2

1

1
1

n p n p n p
p p p

n p n p n p
p p p

n p n p n p
p p p

e e e
c

e e e
c

d d d
c

− − − − − −
+ +

− − − − − −
+ +

− − − − − −
+ +

⋅ + ⋅ +

≥ ⋅ + +

≥ ⋅ + +
−

v v v

v v v

uv uv uv 1

 

 
Hence the proof is complete because we have shown that the inequality (9) is true. 

 

4.6.2 Case 2: Assume that c  is even 

 

Applying recursion and induction to 1

1

n n
cQ Q

c c
+ ≥ c

−
 to get  inequalities where p

2
cp = .  

Use the same technique as in case 1.   
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( ) ( )
( ) ( )

( ) ( )

1 1 1
2 1 2

2 2 2
3 2 3

1

1 1... ...
1

1 1... ...
1

...
1 1

1

n n n n
c c

n n n n
c

n p n p n p
p p p

e e d d
c c

e e d d
c c

e e d
c c

− − − −
− −

− − −
−

− − −
+

⋅ + + ≥ ⋅ + +
−

⋅ + + ≥ ⋅ + +
−

⋅ + ≥ ⋅
−

v v uv uv

v v uv uv

v v uv

1
2

12
3c
−
−     (11) 

 
The inequalities above are true if and only if: 
 

( )1 1
1

1 0
n p n p
p pe e

c
− − − −

+⋅ +
v v

≥  

 
But the above is true as all elements of the matrices  are non negative.  Hence the 
proof is complete. 

n
cQ

4.7 Corollary of Lemma 3 

 

Combining the result of Lemma 1 to that of Lemma 3, we obtain the second main result of 
this paper, the lower bound to the probability of finding the optimal solution in a network that 
has  links and s  paths between all pairs of nodes: e
 

 
( ) ( )

( )
( ) ( )

( )

( ) ( )
( )

2 2

2

2 2
1 1 1 1

1 1

2
1 1

1

s e

n n
C C

e s

n
C

C C
p a Q a Q

C C

C
a Q

C

+

⎛ ⎞ ⎛ ⎞− −
⎜ ⎟ ⎜ ⎟≥ − − ⋅ ⋅ ⋅ − − ⋅ ⋅
⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝

⎛ ⎞−
⎜ ⎟= − − ⋅ ⋅
⎜ ⎟−⎝ ⎠

⎠      (12) 

 

4.8 Proof of Corollary 

 

The probability of finding the optimal solution is the product of the probability that each path 
carries the optimal flow (provided by Eqn. (3)) and the probability that each link has the 
optimal capacity (provided by Eqn. (6)).  That is, following the inequality sign in Eqn. (12), 
the first factor is the lower probabilistic bound of finding the optimal flows where s is the total 
number of paths between all pairs of nodes, while the second factor is the lower probabilistic 
bound of finding the optimal capacities for links. e
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4.9 Example 

 

Figure 4 below shows that the probability of achieving the optimal solution increases as a 
function of number of runs.  This is so as the larger the number of runs, the higher the 
probability of achieving the optimal solution.  20C =  ( )21 and 22C C= =  means the flow 
through each link ranges from zero to twenty (zero to twenty one and zero to twenty two).  
Note that as  decreases, the search space decreases and hence it is easier to find the optimal 
solution and therefore the probability of achieving the optimal solution increases.  Figure. 4 
assumes the network shown in Figure 2, i.e., there are ten links 

C

( )10e =
50s

 and ten pairs of 
nodes.  Assuming five paths per pair of nodes yields the parameter 10 5= = ⋅ .  Based on 
Eqn. (12), the lower bound for the probability of finding the optimal solution is:  
 

( ) ( )
( )

60

2

2
1 1

1
n
C

C
p a Q

C

⎛ ⎞−
⎜ ⎟≥ − − ⋅ ⋅
⎜ ⎟−⎝ ⎠

 

 

Figure 4: Lower Bound to the Probability of Achieving the Optimal Solution as a Function of 
Number of Runs. 
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4.10 Discussion 
The reader might wonder what happens when  is equal to zero.  If it was the case, then a
 

 ( ) ( )
( )

60

2

2
1 1 1

1
n
C

C
p a Q

C

⎛ ⎞−
⎜ ⎟≥ − − ⋅ ⋅ =
⎜ ⎟−⎝ ⎠

 

 
as 
 

0n
CQ =  

 
hence 
 

0n
CQ =  

 
for all , which implies that we would find the optimal state at the first iteration, i.e., when n  
is equal to one.  This seems paradoxical.  The answer lies in the fact that  is the number of 
iterations that will produce feasible solutions.  As a result, when 

n
n

0CQ = , there is no feasible 
solution because the probability of transition from a feasible state to another feasible state as 
dictated by the matrix  is zero. CQ
 
Even though, in this report, a specific type of Markov matrix  (as shown in EqnCQ (4)) was 
chosen, it is believed that the methodology developed here can be extended to a more general 
class of Markov processes.  For example, transitions do not necessarily have to be among 
nearest neighbours.  State 1 can transition to state 3 without going through state 2.  This 
means  can be more general as shown below:   CQ
 

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

0 0 0 0 0
0 0
0
0 0
0 0 0 0 0

C

a a a
Q a a a

a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

0⎟        (13) 

 

5 Conclusion 

This paper described a new agent-based algorithm that optimizes an objective function 
depending on both the flow and the capacity of each link, and that satisfies the traffic matrix 
constraint.  In addition, a novel rate of convergence was derived for this algorithm when 
assuming no reinforcement learning.  It is believed that the rate of convergence, when 
reinforcement learning is imposed, can be further derived.  
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Glossary .....  

Technical term Explanation of term 

Δ  Difference between the matrix and the matrix Q  P

uvγ  Minimal traffic requirement between node and node  u v

C  Maximal capacity of the network 

ic  Capacity of link  i

n
id

uv
 The column of the matrix  ith n

cQ

c
ijD  Probability that the current capacity of link i should be 

decreased 
j

p
uvlkD  Probability that the path that carries flows between node u and 

node v should be decreased  
l k

n
ie
v

 The column of the matrixith 1
n
cQ +  

f  Flow through a link 

c
ijI  Probability that the current capacity of link i should be 

increased 
j

p
uvlkI  Probability that the path that carries flows between node u and 

node v should be increased  
l k

ijP  Transition matrix from units of flow to units of flow  i j

ijQ  Same as with the exceptions that the first row, first column, 
last row and last column are set to zeroes   

ijP

c
ijS  Probability that the current capacity of link i should be 

maintained 
j

p
uvlkS  Probability that the path that carries flows between node u and 

node v should be maintained  
l k
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